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ACOVSM
A General Computer Program for Analysis of Covariance

Structures Including Generalized MANOVAl

1. Introduction

In a previous paper, J8reskog (19TOa)developed a method for estimating
a model involving structures of a very general form on means, variances and
covariances of multivariate observations. With this method, a great deal
of generality and flexibility is achieved in that the method is capable of
handling most standard statistical models as well as many nonstandard and
complicated ones. The purpose of this paper is to describe a computer
program for this method.

When the variance-covariance matrix of the observed variables is un-
constrained, the method may be used to estimaté location parameters and
to test linear hypotheses about these. For example, the program may be
used to handle such standard problems as multivariate regression, ANOVA
and MANOVA, although there may not be any advanfage in using this particu-
lar program as compared to other existing programs. It can also be used for
generalized MANOVA in the sense of Potthoff and Roy (1964), Khatri (1966)
and Grizzle and Allen (1969) (see also Rao, 1959, 1965, 1966, 1967; Gleser
and Olkin, 1966). A unique feature is that the method can be used
also when the variance-covariance matrix is constrained to be of a certain
form. 1In this case one can estimate the covariance structure as well as

location parameters and, in large samples, one can test various hypotheses

l'I‘his research has bcen supported in part by grant NSF-GB—12959 from
the National Science Foundation.
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about the structure of the variance-covariance matrix. This is useful in
many areas and problems particularly in the behavioral sciences. For
example, one can handle such problems as analysis of congeneric tests,
factor analysis, analysis of multitrait-multimetbod data, analysis of sim-
plexes and circumplexes, analysis of multitest-multioccasion data and growth
data in general, analysis of mixed and random effects ANOVA and MANOVA, path
analysis and linear structural equations (J8reskog, 1970a-b, 1971). Vari-
ous other models involving correlated errors or errors of measurement can

also be handled.

1.1 The General Model

The general model considers a data matrix X(N x p) of N observations
on p variates and assumes that the rows of X are independently distributed,
each having a multivariate normal distribution with the same variance-covariance

matrix £ . It is assumed that
e(X) = AsP (1)

where A(N x g) = (%as) and P(h x p) = (pti) are known matrices of ranks
g and h , respectively, g< N, h<p and =(gx h) :(gst)l is a matrix

of paraméters; and that £ has the form

% = B(AGA' + \VE)B' + @2 :

’ (2)

where the matrices B(p x q) = (Bik) , Alagxr) = (%km) , the symmetric
tri 0 = i i =
matrix @(r x r) (¢mn) and the diagonal matrices V(g x q) = (SKlwk)

and ©(p x p) = (Sijei) are parameter matrices.
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Thus the general.model is one where means, variances and covariances
are structured in terms of other sets of parameters thét are to be estimated.
In any application of this model, p , N and X will be given by the data,
and g, h, q, r, A and P will be given by the particular applica-
N tion. In any such application we shall allow for any one of the'parameters
in £, B, A, ®, ¥ and ©® to be known a priori and for one or more
subsets of the remaining parameters to have identical but unknown values.

Thus parameters are of three kinds: (i) fixed parameters that have been

assigned given values, (ii) constrained parameters that are unknown but

equal to one or more other parameters and (iii) free parameters that are

unknown and not constrained to be equal to any other parameter.

The computer program estimates the free and constrained parameters of
any such model by the maximum likelihood method and provides a test of good-
ness of fit of the whole model against the general alternative that P is
square and £ and .Z are unconstrained. A test of a épecified model
(hypothesis) may be obtained, in large samples, by computiﬂg the maximum
likelihood solution under the two models and then setting up the likelihood
ratioitest (see 1.5). In the special case when both £ and I are

unconstrained, one may test a sequence of hypotheses of the form
CED =0 , (3)

where C(s x g) and D(h x t) are given matrices of ranks s and t,

respectively.




1.2 Identification of Parameters

Before an attempt is made to estimate a model of this kind the identi-
fication problem must be examined. The identification problem depends
on the specification of fixed, free and constrained parameters.

S -1
L N by TATST,

@Té and we by legTi while © 1is left unchanged, then &

It should be noted that if B 1s replaced by BT
® by T2
is unaffected. This holds for all nonsingular matrices Tl(q X Q) and

T2(r x r) such that leeTi is diagonal. Hence in order to obtain a

. unique set of parametérs and a corresponding unique set of estimates, some
restrictions must be imposed. In what follows it is assumed that all such
indeterminacies have been eliminated by the specification of fixed and
constrained parameters. To make sure that all indeterminacies have been
eliminated, one should verify that the only transformationé Tl and T2

that preserve the specifications about fixed and constrained parameters are

identity matrices.

l.3 Matrices U, V and W

Since N may be large, the matrices X and A are not stored in the
computer. Instead the information provided by these matrices is summarized

in three matrices U, V and W defined as follows:

U(g x g) = (1/N)A'A (%)
V(g x p) = (L/W)A'X (5)
Wip x p) = (L/MX'X . " | (6)

P

J



1.4 gtandard Case

It is convenient to distinguish between two different cases as follows:
Standard Case: DBoth £ and £ are unconstrained.

Nonstandard Case: Otherwise.

» In the standard case, the maximum likelihood estimates of £ and 2
are
& - ulysteresie) Tt (7)
£=8+Que , SR (8)
where

W - vl (9)

wn
1

and

vlv -8 (10)

&L
]

To test the hypothesis CED = O against CED % O one uses

S, = pr(es ter) (11)
s, = (c&p)'(cret)™(c%p) : (12)
\
where
R=Uut 4 gs vt (13)
Let the eigenvalues of ShS;l be %l > %2 2 eee 2> %t . The program gives

the three test statistics
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Largest Root

Sum of Roots

t
Likelihood Ratioc = 1/ 1 (1 + A )
i=1

The largest root test, due to Roy (1953), can be used with Heck's
(1960) tables. The sum of roots test ié due to Lawley (19%8) and Hotelling
(1951). The likelihood ratio test is an extension of Wilks' (1932) A\ -test
and can be used with correction tables provided by Schatzoff (1966). When
N is large, =-[N-g - (p - h) - % (t - s+ 1)] times the likelihood ratio
is approximately distributed as X2 with st degrees of freedom.

It should be noted that if P is square and nonsingular, formulas

(7), (8), (10) and (12) reduce to the ordinary formulas for MANOVA, i.e.,

3 =ulypt o (7a)
=8 (82)
Q=0 (102)
5, = (¢Ep)* (cuter) H(cEp) . (12a)

1.5 Nonstandard Case

In the nonstandard case, the logarithm of the likelihood, except for

a constant term, is given by

log L = ~-(v/2){10glz| + tr[r(z)s™t)} (14)



where

=
P
t2)
g
1}

(1/N)(X - AZP)'(X - AZP)

W - P'S'V - V'EP + P'E'WUEP . (15)

Y

The maximum likelihood estimates are computed numerically by minimizing
- el
F(E,B,A,0,v,8) = logis| + tr[T(z)s™"]

using a modification of the method of Fletcher and Powell (1963) (see
Gruvaeus and Jdreskog, 1970). However, the minimization method is not ap-

plied directly to F but instead to

£(B,A,9,¥,0) = min F(EB,A,0,V,8) (16)
= F(Ez:B;A;Q:\v;@) s
where EZ minimizes F for given £ . If £ dis unconstrained,
2 = v e (pripr) Tt )

but this formula cannot be used if & contains fixed and/or constraihed

o

z

P is quadratic in £ . The minimization of f takes into account the

elements. Nevertheless, can easily be evaluated since, for given Z ,
specification of fixed, free and constrained parameters. During the minimiza-
tion, F is regarded as a function of the independent parameters ot = (91,
62,---,8m) , say.

The minimization method is a rapidly converging iteravive method that
makes use of exact first-order derivatives and a symmetric métrix E of

order mxm . Initially T 1is obtained as the inverse of the information
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matrix e(ézf/aeae') evaluated at the starting point. In subsequent itera-
tions E 1is dimproved, using information built up about the function, so
that ultimately E converges to an approximation of the inVerse of
agf/aeae' at the minimum. When the minimum has been obtained, the inverse
of C(agf/aeae') is computed again to give an estimate of the variance-
covariance matrix of the estimators. This is used to obtain standard errors
of the estimated pérameters.

Three different estimates S , T and § of % are computed.

S 1s defined by (9) and is the maximum likelihood estimate under the
condition that P 1s square and nonsingular and % 1is unconstrained.

f  is the matrix T(EZ) evaluated at the minimum of F . If = is
constrained, this estimate is not necessarily of the form (2).

2 is the overall maximum likelihood estimate of Z£ computed from (2)
and evaluated at the minimum of F .

If £ 1is unconstrained, % and s are identical. Otherwise, resid-
ual variances and covariances are defined as the elements of @ -5

Let Hb be any specific hypothesis concerning the parametric struc-

ture of the general model and let H. be an alternative hypothesis. One

1
can then test Hd against Hl by means of the likelihood ratio technique.
Let Fb be the minimum of F under Hb and let Fl be the minimum of F
under Hi . Then Fl S_FO and minus two times the logarithm of the likeli-

hood ratio becomes N(FO - Fl) « Under H. .this is distributed, in large

0

samples, as a X2 distribution with degrees of freedom equal to the dif-

ference in number of parameters estimated under Hl and HO .



Y r—————

_9_

2. The Program

Tn this section we describe briefly what the program does. Details

about the input and output are given in sections 3 and 4 respectively.

- ~
v " ey .

2.1 What the Program Does

The input date may be the partitioned matrix (X/A) , from which the
: ¥

matrices U, V and W ‘are computed (see 1.3), or the matrices U, fV and

: : A }
W , read in directly. Tn the standard case, other data matrices are Pg,

c and D (see 1.1).
t

In the nonstandard case, the user can request an accurate or an agéggzi-

mate solution. If an accurate solution is requested, the iterations of fthe
i

minimization method are continued until the minimum of the function is
f all derivatiives

found, the convergence criterion being that the magnitude o

be less that .00005. The solution is then usually correct to three sighifi-

cant digits. If an approximate solution is requested, the iterations termi-
nate when the decrease in function values is less than 5%. The approxinate

2{ will LlSl;La:Lly
The opiion

solution may be useless but the residuals and the value of X

give an indication of how reasonable the hypothesized model is.

of an approximate solution has been included in the program for the purpose

of saving computer time in exploratory studies where the primary purposp 1s

to find a reasonable model. Once such a model has been found, an accurpte

In the standard case, the user can test a se

solution may be computed-.
v, W, P}

quence of hypotheses of the form CED = 0 for given U,

C and D (see 1.1).
In the hon-

A variety of options for the printed output is available.

Q standard case,
ERIC |
o -, 1

)
L) {

residuals may be printed, which are useful for judging 1ne

IToxt Provided by ERI
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goodness of fit of the model to the data. These are the mec¢. residuals

defined as

v - U%P

and the residuals for X defined as

=
'
™M

X? is printed as an overall goodness of fit test statistic and standard
errors for the estimated parameters may be requested. In the standard case,
if testing the hypothesis CZD = O , the largest root, the sum of roots and
the likelihood ratio, as described in section 1.4, will be printed. The
large sample transformation of the likelihood ratio to a X2 is also

printed.

2.2 How Fixed, Free and Constrained Parameters Are Specified

This section only applies to the nonstandard case (see 1.5). Since
specifications for £ are slightly different from the specifications of
the other parameter matrices, B, A, &, V¥ and © , they will be

described separately.

Specifications for B, A, &, ¥ and ©

The elements of the five matrices are ordered as follows. The matrices
are assumed to be in the order B, A, ¢, ¥ and ® and within each
matrix, the elements are ordered row-wise. The diagonal matrices ¢ and
® are treated as row vectors.

For each of the five parameter matrices, a pattern matrix is defined,

with elements O, 1, 2 and 3 depending on whether the corresponding element

11
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in the parameter matrix is fixed, free, constrainéd follower and constrained
leader, respectively. A constrained parameter is called a constrained
leader the first time it appears in the sequence. The parameters appearing
later in the sequence and assumed to be equal to the constrained leader are
. called constrained followers.

The above technigue defines uniquely the positions of the fixed, free
and éonstrained leader parameters. It does not define, however, which
followers go with which leader, if there 1s more than one leader. To do
80 one must also specify all the followers associated with a given leader.
This is done by assigning to each leader and follower a five-digit number
MRRCC, where M defines the matrix in which the constrained parameter
appears (M =1 for B, 2 for A, 3 for @, 4 for ¥ and 5 for ® ),
and RR and CC are the row and column position of the parameter in the
matrix. For example,

10101 10201 103Q1 20403
defines Bll ='621 = 651 = %45 where Bll is the leader and 621 B ﬁEl
and %”5 are the followers. Such a string of numbers has to be provided
for each leader.

Pattern matrices have to be provided for each matrix containing both
fixed and free parameters and for each matrix containing constrained param-
eters. Patterns for parameter matrices whose elements are all fixed or all
free are set up by the program.

We give a simple example to illustrate the above specifications.

Suppose A(2x2) =I, ¥(2x2)=0 and
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F I
By © 6, © 0
B 0 0 b 0
B=o21 8 Q’"E 1] ©=lo 29 0
22 3
0 0 0O 6
B Pug )y

with Bll = 621 5 652 = BhE s 8. = 92 5 e5 = 94 . The pattern ma?rlces

for B, ® and © are

3 0

2 0 [o] _
P = P, = Po=[3 2 3 2]
B 0 3 o 10 e

0 2

and the specifications of leaders and followers are

10101 10201
10302 10402
50101 50102
50103 5010k

In this model five independent parameters will be estimated.

Specifications for =

The pattern for = 1is defined in the same way as the patterns for 3B,

A, &, Vv, ®. To specify what follower is associated with a given

leader, a five-digit number MRRCC is assigned to each leader and follower

as described above, with the one difference that M 1is always equal to 1

since we are dealing with only one matrix. A pattern matrix for 5_ must

always be provided even if the elements of = are all free or all fixed.

In addition to the above specifications for fixed, free and constrained
parameters, start values have to be given for all parameters, except for

those parameter matrices which are of standard form, i.e., B=1I, A=1,

et
Ca
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=1, ¥=0, ©=0. Start values for = are not read in if none of
its entfies are fixed. The start values define the fixed parameters and
initial values for the minimization procedure for the other parameters,
except for Z , whose initial values are set by the program to be equal to
zero. Constrained parameters that are assumed to be equal must be given
the same start values. Otherwise, initial values may be chosen arbitrarily
but the closer_they are to the final solution the less cbmputer time it

will take to reach this solution.

2.3 ILimitations

The program is written in FORTRAN IV-G and has been tested on the 360/65
at Educational Testing Service. Double precision is used in floating point
arithmetic throughout the program. With minor changes the program should
run on any computer with a FORTRAN IV compiler. In computers with a single
word length of 36 bits or more, single precision is probably sufficient.

Iimitations as to the number of free and constrainéd parameters the
ﬁrogram can handle and the storage requirements on the IBM 560/65 are given
in the following table. The given storage requirements assume the program

is overlayed.

Max. no. of variables 15
Max. no. of free and constrained parameters 60
Storage requirement ( K = 1024 bytes) 132K

14




1k

2.4 Availability

A copy of the program may be obtained, upon written request. The user
must provide a tape on which the program will be loaded. The program will
be written on the tape with 80 characters per record. The tape will be
unlabeled. The user must specify whether he wants the tape blocked or
unblocked, in EBCDIC or BCD mode, as well as the density, parity and track
required. Test data will be at the end of the program. The test data are
described in the Appendix. Anyone using the program for the first time

should make sure that the test data run correctly.

2.5 Disclaimer

Although the program has been working satisfactorily for all dats
analyzed so far, no claim is made that it is free of error and no warranty

is given as to the accuracy and functioning of the program.
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5. Input Data

This section is divided into two parts. The first part will describe
the input data for the standard case. The second part will describe the
input data when the nonstandard case is considered (see 1.5).

In both cases, whenever a matrix or vector is read in it is preceded
by a format card, containing at most 80 columns, beginning with a left
parenthesis and ending with a right parenthesis. The format must specify
floating point numbers for the input and parameter matrices, and fixed
point numbers for the pattern matrices, consistent with the way in which
the elements of the matrix are punched on the following cards. Users un-
familiar with FORTRAN are referred to a FORTRAN Manual, where format rules
are given. Matrices are punched row-wise, each row beginning on a new
card. For the symmetric matrices only the lower half of the matrix should
be punched. The elements above the diagonal are automatically set by the

program.

Part I: Standard Case

For each data to be analyzed, the input consists of the following:
1. Title card

2. Parameter card I

3. Rows of (X/A) (i.e. raw data to compute U, V, W)

L. Data matriceé' g, v, W

5. Data matrix P

ps
e
Spe
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6. DParameter card II
or 1 blank card followed by the next data set (either for the
standard case or the nonstandard case)
or 1 blank card followed by a STOP card (see sec. 3.7)
T. Matrices C and D
8. Repeat steps 6 through 7
Sections 3.1 through 3.8 describe in general terms the function and setup

of the above quantities.

5.1 Title Card

Whatever appears on this card will appear on the first page of the

printed output. All 80 columns of the card are available to the user.

3.2 Parameter Card I

All quantities on this card except for the logical variables must be
punched as integers right-adjusted within the field.

cols. 1-5: sample size ( N ), i.e., number of observations

cols. 6-10: number of variables (p ) (<15 )

cols. 11-15: rank of A (g ) (<15 )

cols. 16-20: number of rows in P ('h ) (<15)

col. ki: logical indicator which determines'whether g, v, W

are computed from (X/A) or read in as input data

col. k1: =1T, if rows of (X/A) are read in to compute
U, Vv, W

col. b1: =F, if U, V, W are read in as input
data
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col. h2: logical indicator which determines whether the data matrix

P is equal to the identity or not

col. b2: =T, if P=1I (Note: only if h=p )
- col. 42: =F , if P#1I
col. bu3: logical indicator which determines whether the same U ,

V , W as used in the previous data set will be used
(never true for the first data set) in which case
neither (X/A) nor U, V, W needs to be read in
as input and col. 41 will be ignored

col. 43:

T, if new U, V , W are analyzed

col. U43:

F, if same U, V , W as previous data

set are analyzed

3.3 Rows of (X/A)

Omit if col. 41 or col. 4% of parameter card I is false. Otherwise
the partitioned matrix (X/A) is read in like any other input matrix.
That is, it is preceded by a format card, read in row-wise where each
row consists of a row of X immediately followed by a row of A , and

a new card 1s started for each new row of (X/A) .

L 3.4 Data Matrices U, V., W

! ) Omit if col. 41 of parameter card I is true or if col. 4% is false.
Otherwise read in U, V , W respectively, each preceded by its format
card. Since U and W are symmetric only their lower triangular parts,

including the diagonal, are read in.

[T
2
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3.5 Data Matrix P o

Omit if col. 42 of parameter card I is true. Otherwise read in P

preceded by a format card.

3.6 Parameter Card II

All quantities on this card must be integers right-adjusted within the
field.
cols. 1-5: number of rows in ¢ (s ) (<15)

cols. 6-10: number of columns in D (t ) (<15 )

5.7 Matrices C and D

Matrices C and D are read in consecutively, each preceded by its

format card.

3.8 Stacked Data

The steps described in sections 3.6 and 3.7 can be repeated as many
-times as desired or they can be skipped altogether. The end of each

standard data set must be followed by a blank card. This set can then

be followed by a new data set, either for the standard case or the non-
standard case. Any number of such data sets may be stacked together and
vanalyzed in one run. Note: since the program looks for a blank card, any
input ga?dsvfor matrices with all zero rows should have the zero entries
punched, i.e., do not use a blank card in lieu of all zero entries on an
input card.

After the last set of data in the stack, there must be a card with the

word STOP punched in columns 1-4.

19
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Part I7: DNonstandard Case

For each data to be analyzed, the input consists of the following:
< 1. Title card
2. Parameter card

. Starting matrix =

Q3]

. Specifications for

. Rows of (X/A)

3
L
5
6. Data matrices U, V, W
T. Data matrix P
8. Pattern matrices for B, A, @, ¥ and ©
9. Equalities

10. Start values for B, A, &, V¥ and ©

11l. New data set or STOP card

5.9 Title Card

Whatever appears on this card will appear on the first page of the

printed output. All 80 columns of the card are avallable to the user.

%3.10 Parameter Card

A1l quantities on this card except for the logical variables must be
' -l punched as integers right-adjusted within the field.

cols. 1-5: sample size ( N ), i.e, number of observations
! cols. 6-10: number of variables (p ) (<15 )
| cols. 11-15: rank of A (g ) (<15)

cols. 16-20: number of rows in P (h ) (<15 )

20
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cols. 21-25: number of columns in B (q ) (<15 )

cols. 26-30: number of columns in A {(r ) (<15)

cols. 31-35: total estimated execution time in seconds for all
stacked déta (SEC). This should be a mmber slightly
less than the time requested on the control cards so
the proéram will have time to print and/br punch results
up to that point. (Note: SEC should be read in for
each nonstandard data set and should be the same for
all such data sets in the stack.)

cols. 41-k3: logical indicators (see below)

cols. 51-5h: integér indicators (see below)

cols. 61-65: logical tape (disk) number of a scratch tape (disk) used

in the program in the nonstandard case

Logical.Indicators (cols. 41-43): The logical indicators control the
input as described below.

Column 41 determines whether U, V , W are computed from (X/A)
or read in as input data.

col. 41: T, if rows of (X/A) are read in to compute U, V, W

il

col. hi:

¥, if U, V, W are read in as input data

Column 42 determines whether the data matrix P 1is read in or set
equal to the identity matrix by the program.

col, 42: =7, if P=1I (note: 'only if h=p)

col. h42:

F, 1f P is read in as input data

Column 43 determines whether data matrix = is read in or not. If no

elements in £ are fixed, § 1is not read in.
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col. 43: T, if £ 1is read in as input data

i

col. L3:

]

F, if % 1is not read in

Integer Indicators (cols. 51-5k).

i N E S e tm - vpgy e e

Column 51 determines the type of printed output wanted. This$ can be
standard output ( S ), parameter specifications ( R ), the matrices T ,

I', = and residuals ( C ), and technical output ( D ). (See 4.2-4.5.)

col. 51: =0, for S

col. 51: =1, for S + R

col. 51: =2, for S + C

col. 51: =3, for S +R + C
col. 51t =4 , for S+ 0D

col. 51: =5, for 8 +R + D
col. 51: =6, dfor S +C+D
col. 51t =7, for 8 +R+ C+D

“Column 52 -deberminesc whether the same U, V , W as used in the
previous data set will be used (never true for the first data set) in which
case neither (X/A) nor U, V , W need be read in as input (G ). It
also determines certain extra printed or punched output. This can be

standard errors ( F ) and a punched solution ( P ). (See 4.6-4.7.)

]

col. 52: 0 , 1if no extra output is wanted

col. 52: =1, for F

col. 52: =2, for P
col. 52: =3, for F+ P
col. 52: =4 , for G
col. 52: =5, for F + G
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col. 52: =6, for P+ G

col. 52: =7, for F +P +G

Column 53 determines whether an accurate or an approximate solution
is required.

. col. 55: =0, 1if an exaclt solution is required

1l

col. 53: 1, 1if an approximate solution is required
Column 54 will be set to zero or left blank for ordinary purposes.
col. 54: =0 ; 1iterate and obtain all output requested through

columns 51 and 52

col. 5k: =1 , ho iterations (This may be used if one wants to test
the goodness of fit of a solution which is completely
specified.)

col. 54: =2, no standard output

- 3.11 Starting Mabrix =

Omit if col. 43 of the parameter card is false, otherwise read in matrix
g -preceded by its format card. The program will set all free and constrained

elements to zero, so only the fixed values read in are relevant.

5.12 Specifications for E

A péttern matrix for & is read in preceded by a format card (see 2.2).
Note: this matrix is read in even if = is not. The pattern matrix for E
is followed by "equality" cards, i.e., cards which determine which elements
are followers and which are leaders (see 2.2). These "equality" cards are
omitted if there are no elements equal to 2 or 3 in the pattern matrix for

¥ . Otherwise, starting in column 1 punch the five digit numbers MRRCC

)
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as described in section 2.2. For each new constrained leader start a new

23]

card. M is always equal to 1 on the "equality " cards specifying

The last entry on each "equality" card is a zero indicating more "equality"

cards follow, or a two indicating it is the last one.

%3.1% Rows of (X/A)

Omit if col. 41 of the parameter card is false or if col. 52 is greater

than three. Otherwise, the partitioned matrix (X/A) 1is read in like any
other input matrix. That is, i1t is preceded by a format card, is read in
row-wise where each row consists of a row of X immediately followed by

a row of A, and a new card is started for each new row.

3.14% Data Matrices U, V, W

Omit if col. 41 of the parameter cérd is true or if col. 52 is greater

than three. Otherwise read in U, V , W respectively, each preceded

by its format card. Since U ahd W are gymmetric, only their lower

triangular parts, including the diagonal, are read in.

3.15 Data Matrix P

Omit if col. 42 of the parameter card is true, otherwise read in matrix

' P preceded by a format card.

3.16 Pattern Matrices for B, A, &, V¥ and O

These pattern matrices are preceded by a data card with entries in
columns 1-5, the column defining the matrix in question, 1 for B, 2 for A,

3 for ® , 4 for ¢ and 5 for © .
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cols. 1-5: CCCCC where C

0, if the matrix is fixed

C=1, 1if the matrix is free

1l

C =2, 1if the matrix has mixed values
A pattern matrix should be provided only when C = 2 {(see 2.2).

For example, 1f columns 1-5 are punched 20100, the matrix B contains
mixed values, A 1is all fixed, @ is all free, V¥ and © are all fixed.
In this case only a pattern matrix for B 1is read in.

Thé pattern matrix consists of a format card specifying an I -format

and subsequent cards with the integer entries of the parameter matrix.

3.17 Equalities

Omit if the pattern matrices for B, A, @, ¥ and © do not con-
tain any elements 2 or 3. Otherwise starting in column 1 punch the five-
digit numbers MRRCC as described in section 2.2. For each new constrained

leader start a-new-card.——The--last-entry.on each. equality" card is a zero

indicating more "equality" cards follow, or a six indicating it is the

last one. The example in section 2.2 would then have the following
equality cards:

10101102010

10302104020

50101501020
50103501046

3.18 Start Values for B, A, &, ¥ and ©

The start values are preceded by a data card with entries in columns
1-5, the column defining the matrix in question.

cols. 1-5: (CCCC where C

n

0 , if the matrix is of standard form

C =1, otherwise (see 2.2)

)
o)
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This card is then followed by the necessary start values, for matrices with

C =1, each matrix or vector with its own format card.

5.19 Stacked Data

In sections 3.9 through 3.18 we have described how each set of non-
standard data should be set up. Each such set of data can be followed by
another data set, either for the standard case or the nonstandard case.
(ngg: a blank card does not indicate the end of a nonstandard data set--
this is only true for the standard case (see 3.8).)

After the last set of data in the stack, there must be a card with the

word STOP preceded in columns 1-h,

26
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L. Printed and Punched Output

The output consists of a series of printed and punched tables as de-
described in sections 4.1-4.7. Section 4.1 describes the output obtained
when the standard case is considered. All subsequent sections deal with
the various output options open to the user when considering the non-

standard case.

4,1 Output for the Standard Case

The output for the standard case consists of the title with parameter

{1y

listing, the matrices U, V , W , the matrices P, ) $ and 8

Q

(if h=p £ is not printed since £ = S). Matrices , D, 8 , 8

e h

(see 1.k) and the three test statistics--the largest root, sum of roots,
likelihood ratio and X2 - are printed when testing the hypothesis CEZD = O .

The parameter listing gives the information supplied on parameter

= e A e e e

card I.

4.2 Standard Output ( S ) for the Nonstandard Case

The standard output is always obtained regardless of the value punched
in columns 51 and 5? of the parameter card (see 3.10). The standard out-
put consists of the title with parameter listing, the matrices U, V,
W, P and S , the final solution and the result of the test of goodness
of fit.

The parameter listing gives the information supplied on the parameter

card.

27
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The final solution consists of six matrices g B B B A s ® 5 @
and é . All numbers are printed with three decimals.

The test of goodness of fit gives the value of X2 and the correspond-
ing degrees of freedom. The probability level is also given. This is de-
fined as the probability of getting a X2 value larger than that actually
obtained, given that the hypothesized structure is true.

Just above the table giving the final soclution, the following message

is printed
'IND = X-'

Usually X 1is O, but if, for some reason, it has not been possible to
determine the final solution, X will be 1, 2, 3, 4% or 5. If IND is
1, 2 or 3, "serious problems" have been encountered and the minimization

of the function cannot continue. One reason for this may be erroneous

input data. Another _reaso}l ‘may be that a point has been found where the
matrix & is not positive definite. A third reason may be that insuf-
ficient arithmetic précision is used. If IND is 4, the number of itera-
tions has exceeded 250. If IND is 5, the time limit SEC has been
exceeded (see 3.10). If IND # 0 , the solution obtained so far is auto-
matically punched on cards. Each of the six matrices are preceded by a
format card, so that they can immediately be used as initial estimates for
a new run with the same data. Thus there is little loss of information

when execution is terminated with IND % o .

AN
-
A
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4.3 Parameter Specifications ( R ) for the Ionstandard Case

If column 51 of the parameter card is 1, 3, 5 or 7, a table of param-
eter specifications, containing the information provided by the pattern
matrices (see 2.2), ié printed. 8ix integer matrices are printed corre-
sponding to #, B, A, ®, ¥ and ©® . In each matrix an element
is an integer equal to the index of the .corresponding parameter in the
sequence of independent parameters. The matrix £ has a sequence of
independent parameters and the matrices B, A, &, ¥ and ©® to-
getﬁer form a second sequence of independent parameters. Elements cor-
responding to fixed parameters are 0 and elements corresponding to the
same constrained parameter have the saﬁe value. Examples are given in

the Appendix.

~

4.y Matrices %41 T , % and Residuals ( C )

o If_column 51 of the parameter card is 2, 3, 6 or T, ‘the matrices I

A 2 A ~

Y @2 s $ = B8 + 08 , the mean residuals = V -

94

(see 1.5), T = B

~ ~ ~

and the residuals for £ =T - & are printed. The matrices T , I' and
% are computed from the final solution. If the fit is good, % should
agree with T and the residual matrix should be small. Elements of the
residual matrix may suggest how the hypothesized structure should be

medified to obtain a better fit. All five matrices are printed row-wise,

each element with four decimals.

4.5 Technical Qutput ( D )

If column 51 of the parameter card is 4, 5, 6 or 7, the technical out-

put is printed. This consists of a series of tables that describe the
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behavior of the iterative procedure and give various measures of the ac-
curacy of the final solution. Ordinary users will have little interest
in these tables.

The first table of the technical output gives the initial estimates

(8]

for , B, A, &, V¥ and © .

The next two tables show the behavior of the iterative procedure under
the steepest descent iterations and under the following iterations by the
Fletcher and Powell method. For interpretation of these tables the reader
is referred to Gruvaeus and JBreskog (1970). If something goes wrong, so

that IND is 1, 2 or 3 (see 4.2), these tables may contain valuable

information.

4.6 Standard Errors ( F )

If column 52 of the parameter card is 1, 3, 5 or 7, large sample
approximations to the standard errors of the estimated parameters are
printed. These are printed row-wise in matrix form and each number is
printed with three decimals. The reader is referred to the paper by

JBreskog (1970a) for information about how the standard errors are obtained.

4.7 Punched Qutput ( P )

If column 52 of the parameter card is 2, 3, 6 or T, the final solu-
tion is punched on cards. These cards are punched in matrix form. Each
matrix is preceded by a format card and each row of the matrix begins a

new card.

© 3y
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Appendix

We shall illustrate how input data are set up and what the printout
looks like by means of two small sets of data. These data also serve as
test data to be run when the program has been compiled on another compu-
ter. The various models and hypotheses have been chosen to illustrate
the possibilities available in the program rather than the statistical
problems involved.

Both sets of data are analyzed in one run. Pages A6-A9 show cérd
by card how the input is punched. One line corresponds to one card.

Pages AlO-A36 show the corresponding printout obtained.

The first set of data is taken from Smith, Gnanadesikan and Hughes
(1962) and consists of N = 45 observations on two covariables and p = 11
biochemical response measurements. The subjects were individuals classified
into four weight groups. For further information about the subjects and
the measurements, see the above reference and references therein.

The model is

e(Mysy11) = Mysxsiexil 2

i.e., I . The first four columns of A are used to classify

Pl =
individuals into weight groups and the last two consist of the measurements
of the covariables. We do an ordinary MANOVA (standard case) and test the
two hypotheses, Hl
2, 3 and % of E are all zero. These correspond to the hypotheses that

that the first row of £ 1is zero and H2 that rows

the overall mean effect is zero and that there is no difference between

© 34
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weight groups, respectively. For both hypotneses we have D I

11x11
for H we have

1
Clug = (L 0 0 0 0 0)

and for H2 we have

%6

o O O
o O

For the analysis we use the raw data published in tables 2 and 3 of
Smith et al. (1962).

The second set of data is taken from Potthoff and Roy (1964) and is
used to illustrate the standard case with P rectangular (h < p) and
also the nonstandard case with both £ and £ constrained. It consists
of measurements on 1l girls and 16 boys at 4 different age levels.

Two analyses of these data are done. The input for the first analysis
is the matrices U, V and W . Here we assume that Z is uncon-

strained and that

8(X27xh) = A27x252x5P5xh ? (A1)

3

where A 1is a matrix of zeros and ones with ones in column 1 for girls

and ones in column 2 for boys and where

1 1 1 1
P= 135 -1 1 .
9 1 1 9

39
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The rows of EP represent two quadratic growth curves, one for girls and

one for boys. We test two hypotheses Hl and H2 5 Hl is that the co-

efficients & and §25 of the second-order terms are zero, i.e., that

135

! . the growth curves are linear rather than quadratic; H is that the two

2

growth curves are the same, i.e., that the two rows of £ are identical.

This amounts to choosing C and D as follows:

0
For Hl : C2X2 I and D5Xl = (i) .

For H, = C1x2‘(l -1)

D5X5 =1 .

The second analysis uses the same U, V and W as used previously
and assumes that £ has a quasi-Markov simplex structure with equal error

variances (see J8reskog, 1970, section 5.6). This may be represented as

5 = AGA' + 65T :
where
* 7\ll
%21 0 1
A=lo" 2 g =
I 32 o 1
0 Ny

and 6 is a scalar. 1In terms of {2) this is specified by choosing thh =1,
Ahx2 =A, ®2X2 =%, ¥v=0 and ® constrained to have all diagonal

elements equal. The model (Al) is the same but we now assume that

30
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ng = §25 =0, gll = 521 and gle = gee . This analysis yields maximum
likelihood estimates (accurate solution) of gll = 521 5 512 = 522 5 %ll 5
%21 , %52 5 %ne , P, 6 and an overall test of goodness of fit.

In the nonstandard case various time estimates are printed on the
output. The time shown is the time taken to compute the solution that

follows the time estimate. This time includes only the iterations and not

the time for printing, except for the technical printout if requested.
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ANALYSIS CF COVARIANCE STRUCTURES
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